A novel modified TRSVD method for large-scale linear discrete ill-posed problems

نویسندگان

چکیده

The truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed problems with small to moderately sized matrix A. This replaces the A by closest Ak of low rank k, and then computes minimal norm solution system equations rank-deficient so obtained. modified TSVD (MTSVD) improves method, replacing that closer than in unitarily invariant has same spectral condition number as Ak. Approximations SVD large can be computed quite efficiently using randomized (RSVD) method. paper presents novel (MTRSVD) computing approximate solutions large-scale problems. rank, determined aid discrepancy principle, but other techniques selecting suitable also used. Numerical examples illustrate effectiveness proposed compare it RSVD

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified TSVD method for discrete ill-posed problems

Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed problems with a small to moderately sized matrix A. Regularization is achieved by replacing the matrix A by its best rank-k approximant, which we denote by Ak. The rank may be determined in a variety of ways, e.g., by the discrepancy principle or the L-curve criterion. This paper describes a ...

متن کامل

Iterative Solution Methods for Large Linear Discrete Ill-posed Problems

This paper discusses iterative methods for the solution of very large severely ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by errors. Solution methods proposed in the literature employ some form of ltering to reduce the in uence of the error in ...

متن کامل

Square regularization matrices for large linear discrete ill-posed problems

Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...

متن کامل

FGMRES for linear discrete ill-posed problems

GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2021

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2020.08.019